AD=A103 102 KANSAS STATE UNIV MANHATTAN DEPT OF COMPUTER SCIENCE F/¢ 9/2
RESEARCH IN FUNCTIONALLY DISTRIBUTED COMPUTER SYSTEMS DEVELOPME==ETC(U)
EB 77 P S FISHER: F J MARYANSKI DAAGZ%?WG'I.?B

Fi
UNCLASSIFIED (S-77-5

o e SO

(6 ’

&
»
!”"’rz.
v
e
‘ 1
o |
. i\‘\\ T

Technical Report

e : 7
.:“ Vel 3 !“'/
i AIRMICS Army Institute tor Research in 313 Calculator Bidg.
: Management Information and GA Institute of Technology
| Computer Science Atlanta, GA 30332
[}
. ¥
.']’

S o

RESEARCH IN FUNCTIONALLY
DISTRIBUTED COMPUTER

SYSTEMS DEVELOPMENT

WA103102

Kansas State University

Virgil Wallentine

Principal Investigator

i _ Approved for public release; distribution unlimited
: VOLUME XIX
[ROLL=BACK AND RECOVERY IN DISTRIBUTED
p! ~— DATA BASE SYSTEMS
S
: Lad
i {
i_ U.S. ARMY COMPUTER SYSTEMS COMMAND FT BELVOIR, VA 22060
‘ g

UNCLASSIFIED

C .

SECURITY CLASSIFICATION OF THIS PAGE (When Date Frtered) / In fe r /m r‘

REPORT DOCUMENTATION PAGE

_/ Iy

DEFORF COMPL.ETING FORM

AD-

oy i\

ACCESSION NOJ 3. RECIPIENT'S CATALDG NUMBER

ALO31Po—

- < J3 GOVY
(o esearrjE 1 Fw.

usr-: §YSTEHS

*’Vc Y Cn uﬂ? S S;fﬁ‘“ - Ay A g
LL-BX?:KXN‘D BECOVERY IN nxsmnum DATA Do) PV T £

Iterim

ORG. REPORT NUMBER

[
i ?
/—A GRANT NUMBER(s)

«77=

—

10} Paul §. / Fisher -

Fred/ﬂaryanski L/) -l;:/

it el e e - — -

e’ ,. n"onmuo ORGANIZATION NAME AND ADORESS
Kansas State University .
Department of Computer Science

R Manhattan, KS 66506

R <l

1. CONTROLLING OFFICE NAME AND ADORESS
US Army Research Office
P O Box 12211 M
Research Triangle Park, NC 27700

19 pages

4. MONITORING AGENCY NAME & ADDRESS(If from €

) 18. SECURITY CLASS. (of thia report)

US Army Computer Systems Cosmand
Attn: CSCS-AT
Ft. Belvoir, VA 22060 / ;l

Unclassified

T, OEC& ASSIFICATION, DOWNGRADING
ouLE

| 24|

. DISTRIBUTION STATEMENT (of thie Rep

Approved for public release; distribution unlimited.

.._—_._J

7. OISTRIBUTION STATEMENT (of the sbetr:.: entered in Block 20, il dilferent frem Repest)

18. SUPPLEMENTARY NOTES

documents.

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized

9. KLY WORDS (C. on side i and

DDBMS

by Bleck mamber)

20. ABSTAACTY (Continue an reverse side if

y and

-over-

8y block number)

0D 3" 1473

E0ITION OF | NOV 69 1S OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

foun

371'13 2

e Sl it

i

LASSIELED

SECUMTY CLASSIFICATION OF Tuis PAGE(¥hen Date Xntored)

.- . - ¢ e

“ADSTRACT-

. “One of the ma jor obstacles to the widespread
development and utilization of distributed data base
management systems is the lack of an efficient recovery
technigque. A methodology is presented here for recovery of
distributed data bases. The central operation of the
recovery technique is rollback of a data base application
task on the processor which controls access to the data.
The rollback procedure restores the data base to its
original state prior to the execution of the application
task and determines the set of applications tasks which may

have been
operated u

not affected by <the procedure. The rollback procedure
attempts to minimiZe the the time and space requirements for

¥
P

effected Dby that <task. Tasks that have not
pon data altered by tasks being rolled back are

recovery.
’ /

Ve mmem et e s o w e maim e e W -

UNCLASSITIED
SECURITY CLASMPFICATION OF THIS FAGE(When Dava Batered)

» *
h
ROLLBACK AND RECOVERY IN
2
: DISTRIBUTED DATA BASE MANAGEMENT SYSTEHS1
Technical Report CS 77-05
' 1
1 Fred J. Maryanski
Paul S. Fisher

v -
e —— — -

. - e e SR e Wt mpmgen e ey b e I
oy M

Computer Science Department e m s

Kansas State University

Manhattan, Kansas

66506

Pebruary, 1977

1The work reported herein was supported
by the United States Army Computer Systems

Command, Grant No. DAAG 29-76-G-0108. s oo ‘..

Accession Fin

Rap s M09

ey

Abstract

- One of the major obstacles to the widespread develop.. nt and utiliza-
tion of distributed data base management systems is the lack of an efficient
recovery technique. A methodology s present here for recovery of distributed
data bases. The central operation of the recovery techaique is rollback of

a data base application task en the processor which controls access to the
data. The rollback procedure restores the data base to its original state
prior to the execution of the application task and determines the set of
application tasks which may have been effected by that task. Tasks that have
not operated upon data altered by task being rolled back are not affected by

the procedure. The rollback procedure attempts to wminimize the time and

space requirements for recovery.

. . e

r—

1. Introduction
Distributed data base managemcnt systcms (DDBMS) have the potcnttallto

make a significant impact on the way data is viewed and processed. The ability ;

to easily and safely access data controlled by geveral different computers has

.been a long_standing goal of workers in the data base area. Progress toward

this goal has accelerated rapidly in both academic and industrial environments.

However, many problems still require efficieant solutions. One of these problenm

‘areas that can have a significant performance impact is roilback and recovery,

which 1s the topic of this paper.

1.1 Distributed Data Base Management Systems
Many forms of distributed data base management systems have been

otudied [1-7]. All distributed data base configurations can be described as
a collection of host, back-end, or bi-functional machines. A host machine is
a processor which executes data base application tasks. The data base operations
requested by a host machine are then performed by a back-end machine. A
i-functional machine contains software to carry out both the host and back-end
functions. Figure 1 illustrates a DDBMS with host, back-end, and bi-functional

processors.

1.2 Recovery in a DBMS .

The recovery mechanism is essentially the same in all single machine
data base management systems. During the execution of the data base application
tssks, all data base requests are logged on a journal file (usually a tape). s
Whenever a data base request results in a modification to the data base, the
effected pages are written onto the journal file in both before and/or after
images. If a point of inmactivity is reached in the processing of the data base,

a checkpoint dump of DBMQ}primary memory is taken. All journal and checkpoint

HOST

A

DATA BASE J+1

4R .._____.:l___1
BI-

BI- BI-
FUNCT [—|Funct F Ugc'r

3808 60

DATA BASE DATA BASE DATA BASE
1l .2 . J

Pigure 1

Distributed DDBMS ..

i
.

information must be time stamped to insure proper scquencing of the recovery

operation, which 1s implied by the relative position of data in the single
machine case.

If an application task should terminate abnormally, its effect on the
data base must be removed. It is possible in an interactive enviromment that
data.written by the terminating application task may have been used by other
tacks which in turn performed additional modifications to the data base.

This phenomenon of an application task using incorrect data to produce additional
incorrect data can have a cascading effect throughout the data base with a

large number of application task; potentially operating with invalid information.
Currently, most DBMS users avoid this problem by doing updates {n a batch mode

a2t a specified time and allowing only interactive query.

In order to undo the effect of an abnormally terminating task on the
data base, a rollback procedure is necessary. The rollback procedure restores
the data base to its state prior to the initiation of the erroneous application
task. The precise form of a rollback ﬁtocedure varies with the organization
and environment of the DBMS.

In cthe simplest case if the run time unit of the DBMS is single threaded
and operates in a batch environment, then the data base can be restored from
tne checkpoint taken prior to the initiation.of the task.

In the more complex case if the run time unit of the DBMS is multi-
thicaded and operates both on-line update and batch tasks simultaneously, then
one of two basic approaches is possible. The simpler approach is to roll back
&1 tasks which either have executed or are executing to the time of initiation
@i ehe fauity task., If this procedure is followed, the integrity of all portions
of tne aata base will be preserved, but at a potentially high cost, since it is

possibie that tasks which have no interaction with the terwminating task may be

rolled back needlessly. The more difficult approach suggests that only processcs

R

S e Aotk S e b o

-3

vhich themselves have used contaminated data de rolled back. In most cascs ~—
this would involve both fewer tasks and less dsta. In either case, the roll-
back procedurec has the following basic steps:

1. The data base 15 restored to the first checkpoint after the initiation
of the faulty task (if a checkpoint has been taken in that time framec).

* 2. The page images prior to each operation from the checkpoint to task
initiation are written back to the data base. It should be noted that
the page images are applied in reverse order (hence, the term rollback).
Either approach to the rollbacf of an incorrect application program
will maintain data base integrity at the cost of halting some or all data base
activity. While the integrit? of the data base is preserved, there can be no
guarantee that any erroneous information obtained by a user from an application

task that terminated between the initiation of the faulty application task and

the beginning of the rollback procedure can be corrected.

2. The Problem of Recovery and the DDBMS

The distribution of a data base system over several processors increases
the complexity of the recovery problem. Just the interprocessor communications
overhead can result in more time-consuming rollback operations if several
processors are required to participate. It is also likely to be the case that
within a DDBMS there is a larger number of programs interacting than in a single
wachine system. Hence, the complexity and effect of any rollback procedure may
ne compounded.

?.1 Possible DDBMS Recovery Alternatives
There are three basic approaches to recovery in a DDBMS.

1. Design the data base to permit only controlled or restricted interaction
among application tasks.

2. Extend the single machine recovery mechanism to the distributcd system.
This approach would entail rolling back all data bases on all back-end
processors in the system to the point of initiation of the faulty task.

A

3. Use a selective recovery mechanism to roll back only those tasks

which have used data provided by the erroneous or tcrminated task.
2.2 Analysis of Alternatives

The three approaches to r.covery in a distributed DBMS that are listed
abpve represent widely differing philosophies. -Each approach has merit for
specific types of organizations and data processing facilities. The criteria
used here to evaluate these alternatives are based upon the recovery procedure's
effects upon system throughput, as well as data availability and the degree
of data integrity maintained yithin the systenm.

The first approach, avoiding integration in the data base, has little
appeal to the designer of a DDBMS, although in practice this might be the most
commonly used technique since many users of data base systems on single machines
feel that avoiding integration is the only reliable means of insuring data
integrity. 1If this user philosophy were applied to a DDBMS, very inefficient
utilization of the distributed system would result. In order to avoid the need
for a sophisticated recovery mechanism-in a DDBMS, two tasks would not be per-
mitted to have simultaneous update capabilities to the same data base. For an
application system under this requirement, the DDBMS recovery problem can be
simplified. An on-line inquiry batch update system would fall in this category.

If the single machine approach is extended to a DDBMS, then the entire
data base would be unavailable during recovery. In a system with a large
number of back-end or bi-functional processors, this approach could result in
the recovery of a small portion of a data base preventing usage of a large,
correct segment of the data. The communication process involved with this
technique {s that a message must be transmitted to all back-end processors

indicating that recovery must begin and the time of initiation of the faulty

program. This system-wide recovery approach insures thut all effects of the

erroncous application program have been removed from the data base. The
main drawbacks to this method are that access to uneffected portions of the
data base is prevented and that unnecessary rollbacks may occur.

A selective recovery mechanism would overcome the main deficiency of
the system-wide recovery strategy by rolling back only those applicarion
tasks that are operating with tainted data. Overall systea throughput would
lacrease under these circumstances, as would accessibility to the data base.

In order for a selective recovery scheme to be worthwhile, data base
integrity must be maintained. Therefore, the scheme must be .2rtain of
including all tasks that have used incorrect data in the recovery process.
In order to accomplish selective rollback, information on the interaction
between application tasks must be maintained. This interaction information
would take the form of a potential shared data list which can be computed
from the sub-schemas of the application tasks prior to execution.

The communication overhead which potentially has the most significant
performance effect in a DDBMS must not exceed one transmission to each back-
end processor if the method is to be effective. The computational overhead
involved in a selective recovery strategy must be maintained at a level
where 1t is not significant in terms of system performance. A selective
:2govery mechanism which satisfies the performance requirements listed above
has the potential for better performance in a DDBMS than the recovery schemes
discussed previously.

In distributed data base systems which are highly integrated and support
aulri-threaded updating, a selective recovery technique is required if both

performance and integrity are to be preserved.

A Sclective Recovery Methodology

The following sections explain a procedure which meets the necessary

~ criteria for selective rollback as described above. In addition, some
comments are made concerning the role of the DBA with respect to & DDBMS
system. The procedure is oriented toward a CODASYL-type DBMS, although

the same general techniques are applicable to any type of data base system.

3.1 Definition-Time Recovery Processing 1
As previously mentioned, the proposed selective recovery methodology
for distributed data base systems reéuires processing at data definitiog
time, as well as run time. When a new sub-schema is created, a potential
shared data 1ist is computed by intersecting all sub-schemas of that schema.
The potential shared data list indicates record and set types that are in

common with other sub-~schemas.

Since each application task invokes exactly one\§ub-schema during its
execution, the potential data overlap of any two applicatiom tasks can be
determined from their potential shared data 1lists. In order to maintain

~ the data overlap information at execution time, the activation of a data

base application task must result in a message being transmittecd to all

applications that have the potential to share data with that task. The

message indicates the application task and sub~schema names. The information
relating active application tasks and sub-schemas 1is maintained in the data
dictionary. When an application task terminates, a similar message is sent
to all tasks with intersecting potential shared data lists.

Situations may arise in integrated data bases i wiich application 1
tasks share record types, but do not operate upon the vomtests of all data
items in the record. A similar possibility is that the application task may

access some data items in a read-and-print mode. In either ef these situations,

an incorrect value in a data item may not be critical to the function of the

“4&‘

program. Rolling back a task duc to an incorrect valuve in a non-critical
data {tem would have an adverse effect on system performance.

The identity of non-critical data itcms is heavily application task
dependent and can in no uiy be inferred from a sub-schema description. Since
the CODASYL specifications [8] do not provide for the identifications of non-
cr;tlcal data items for recovery purposes, some additional mechanisa for their
identifications must be provided to the data base administrator. The simplest
rpproach would be to maintain in the data dictionary a list of non-critical
data items for each application task.

When sub~schemas are 1nt;;sected to form the potential shared record
l1sc, non-critical data items should be removed from the intersection of the
records. Only those records which intersect on critical data items should be

tncluded in the potential shared data list. Figure 2 illustrates the potential

.nared data list for a sample application task, A.

1.2 Logging
The functional back-end processor controls data base access and, therefore,

is the appropriate location to maintain the logs of data base activity. Since
+ back-end processor (or a bi~functional machine serving as a back-end) may
<erve a large number of application tasks, the amount of recovery information
.t be minimized. Many existing single machine data base systems save the
r2fore and after images of each page that 1is altered as a result of a DML
:tacement, For example, in a CODASYL DBMS, changes to set structure can affect
many pages and consequently consume a large amount ;f'file space. In order te

aace the amount of log file space required, an inverse DML rollback technique

t. be used. The inverse technique requires little primary memory, since for

e wost part existing DML functions can be used to perform the rollback

9
Critical Data Ttem List
3
* Task Record Items
A n cl1 dz d3- d4
; A T, d7 ds
B 12} cl1 63
B T, d7 dB
¢ T dy d9 dy9
D Y ds d6
D r, dg dg djo
Potential Shared Daﬁa List (for Task A)
Task Record
B r1
B 123
Cc rz
D r2
Figure 2 R

Sample Potential Shared Data List

A
3

. 10

operations. Table 1 lists the CODASYL DML verbs, the information that a
back-end processor must save to roll back that verb, and the inverse actions.
Hh?ncver a DML verb is executced by a back-end processor, a log file

entry is written. Figure-Sa depicts the format of a log file entry for a

DML verb. Note that the entries have variable lengths. 1In addition/to
recording the DML verbs that have been executed, the log file must also
contain restart information on all apﬁlication tasks. Restart information

- identifies a stable point at which an application program can be restarted.

By default, the system will write a restart entry whenever an application task
is iniciated. It is also desirable to permit the programmer the ability to
indicate a restart point in a task. The CODASYL specifications do not provide
a facility for this operation. However, UNIVAC's DMS-1100 has a similar feature
in the LOG verb [9]. The format of a restart entry for the log file is shown
in Figure 3b.

Pigure 4 gives some sample DML commands and their resultant log file
entries.

In certain cases, particularly a strict retrieval environment, the
logging of read operations may produce a large ;umber of entries on the log
file that will never be applied in any rollback situation. Considerable roll-
back overhead could be saved if the data base administrator were provided the
option of shutting off the logging facility for retrieval operations on selec-~

tive tasks. This could be accomplished at task initiation time.

2.3 Rollback
When the DBMS software on a host processor determines that an application
task has terminated abnormally, rollback procedures are initfated. The host

processor notifies all back-end processors for this task that rollback must

11
DML Effect on Recovery Recovery
Verb Data Base Information Action
ACCEPT None N/A N/A
CONNECT Changes Pointers Record & Set Names DISCONNECT
* DISCONNECT Changes Pointers Record & Set Names CONNECT
ERASE Removes Record Inages of All Erased All Records
and Members Records, Set Memberships .
FIND None N/A N/A
FINISH None . N/A N/A
FREE None WA n/A
GET None N/A N/A
KEEP None N/A N/A
MODIFY Changes Record 01d Record Image MODIFY
Contents
ORDER Changes Pointers Set Pointers in 01d Reorder Using
Order 0ld Pointers
READY None N/A N/A
STORE Changes Record Record Name ERASE
Contents and Pointers
REMONITOR None N/A N/A
USE None N/A N/A
Table 1

Recovery

Information and Action for DML Verbs

ko

1 ' . . 12

)

L

)

i T T RECORD OCCURRENCE L ROLLBACK 5
. 1 A OR OPERATION | INFORMATIO! J
i

a. DML Verb

b. Restart Entry
Pigure 3

Log File Entries

|
i
|

13

Commands Received By

Back-End Processors Log File

Time Command Task Time [Occurrence | Operation
to Initiate A A to — RESTART
) Restart Point-C c ty — RESTART

) tz A: STORE LY A :2 LY STORE

t3 C: GET T, . c tJ T, GET
t‘ Initiate B B t‘ — RESTART
ts A: MODIFY r, A ts rz MODIFY
t6 A: MODIFY 3% A t6 5 MODIFY
5, Initiate D D t, —~— RESTART
ta D: GET L3 D ta rl GET
t9 B: GET r, B t9 :2 GET
'10 B: GET T, B ‘m l:2 GET

Figure 4

Sample Log File

Eeait MR i i s Rt s M

14

occur and provides the task name, its initiation time, its potential shared

data l1st, and a list of its areas which are open for update as paranetérs}

The method for identifying the back-end processors for a given task is explained
in Reference [10]. 1In the ;nsuing presentation, this task shall be known as

the ‘ptimary rollback task.

Each back-end processor that receives the rollback message must refuse to
accept any DML operations accessing the areas updated by the terminating task.
Tae fcllowing rollback procedure is then carried out,

1. Read the log file backwards to locate the initiation point of the task.

2. Read the log file forward from that point and perform the following
operations, depending upon the entry on the log file:

a. If the entry is an update entry for the task that is being rolled
back, make an entry in the update list which indicates the record or set
occurrence whose contents have been modified. An entry in the update list
consists of an ordered pair of record or set type and occurrence indentifiers.
Copy this log file entry onto the rollbéck file.

b. If a MODIFY entry for the task being rolled back alters the contents
of a record occurrence that was previously MODIFIED (this is indicated by the
sresence of the record occurrence on the update list), no action is taken with
.espect to either thelfzgate list or rollback file. This will insure that an
~-dated record is restored only once to its earliest value in the rollback
wrocedure.

c. If an entry for an application task other than the primary roll-
vuck task references a record or set occurrence for which an upd;te list entry
s«1st-, znd an entry for that task and record or set type exists in the potential
ruared data list, that task must also be rolled back. Rollback of this task

sust occur since the task may be operating with incorrect data. The task name

and time of this entry arc saved in a secondary rollback list,
d. All entrics on the log file for tasks in the secondary rollback
1ist are ignored.
e. All entries oa the rollback file for tasks that do not have entries]
in Ehe potential ;shared data list of the primary rollback task are ignored.
f. All entries for non-update DML commands that operate on record or
or set occurrences not in the update list are ignored. .
. g+ Any primary rollback task retrieval entries on the log file are
ignored. . |
3. When the log file has been processed up to the time of termination,
the restoration of the portions of the data base effected by the primary
rollback task is performed by processing the rollback file im reverse and
executing the rollback actions indicated in Table 1.
4. The log file is read backwards in order to locate, for each task in

the secondary rollback list, the restart point immediately preceding the time

at which the incorrect operation was detected.

5. Messages are transmitted to the host processors for the tasks in the
secondary rollback list, indicating that the tasks should be rolled back to
the specified restart point. The host processors will then suspend those
application tasks and send the appropriate nollback information to the back-
end processors for those tasks.

Figure 5 {llustrates the resulting rollback file,update list,and secondary
rollback list 1f the sample application task A of Figure & were to be rolled
back. The potential shared data list of Figure 2 is assumed in this example.

Careful observation of Figures 2, 4, and 5 will lead to the following
conclusions:

1. C is not rolled back since it accesses T, before A updates r,.

16
e’
. Rollback File (Operations) Actions
STORE ry 1. Task A will be rolled
MODIFY rz back to time to.
2. L3 will be removed from
- the data base.
3. T, will be restored to
Update List
its status before time to.
b
2

-

Secondary Rollback List

Task Time

B t‘ .

Figure 5 -~
™
Results of Rolling Back Task A
\ 4

~’

F

. 17

2. D 1is not rolled back since r, 1s not in the potential shared data

1
list (i.e. it is not a critical record for D).
3. The MODIFY r command is not rolled back since it is preceded by a

STORE n command.

4. Although it is not explicictly shown in the figures, the GET r,
com;;nd at time to will be ignored during rollback processing, since B will
have been added to the secondary rollbfck list after processing the log file

entry for time c‘.

3.4 Responsibilities of Data Bgse Administrator

The distribution of a DBMS over a computer network enormously complicates
the data base administration function. If a recovery scheme similar to that
proposed in this paper is implemented, the DBA must make decisions that will
have substantial impact on the time required for recovery. Perhaps the most
important factors are the distribution of the data across machines and the
amount of data integration. As distribution and integration of data increase,
the data base becomes more accessible to a larger number of users. At the
same time, recovery operations become increasingly complex. This quandry |
reduces to the classical data processing tradeoff between flexibility and
efficiency. It is the role of the data base administrator to balance these

two seemingly conflicting factors. *

4. Conclusion

The rollback of an application task by a back-end processor is the central
element in any recovery scheme for a distributed data base management system.
In a highly integrated data base, the procedure may have to be repeated several

times until no new secondary rollback lists are generatcd. Rollback can be

executed concurrently on distinct back-end processors. However, a back-end

A

18

processor can rollback only one application task at a time. It {s {mportant

to note that the recovery procedure does not allow for redundant copies of data
at different back-end processors. Although redundancy is unnecessary in a
truly distributed DBMS, thére are certain circumstances in which practical
confiderations may justify redundancy [1,3]. As in all other situations of
this nature, the DBA must decide on redundancy.

The rollback procedure presented in this paper provides a mechanism
{or efffcient and complete recovery in a distributed data base management
system. The development of an efficient recovery mechanism can have a signi~
¢i{caut impact on the design and usage of distributed data base systems. One
{mpertant design aspect that recovery can impact is deadlock handling. Due
tu potential inefficiencies in recovery of distributed data bases, it has
been argued that deadlock prevention is more efficient than deadlock detection
ror a distributed DBMS [11]. However, an efficient recovery mechanism can
make deadlock detection more attractive.

An efficient and complete recuvery technique could provide data base users
with sufficient confidence in a DBMS to allow the formulation of integrated,
distributed data bases. Without that confidence, the progress in distributed
data base systems will be severely impeded by lack of accepﬁance in the data
wsocessing environment. The recovery procedure presented in this report is a

scep toward developing that user confidence in data base systems.

Bibliography

1. Aschim, F., "Data Base Networks--An Uverview," Management Informatics,
Vol. 3,1, Feb. 1974, pp. 12-28.

2, Baum, R. I. and Hsiao, D. K., "Database Computers--A Step Towards Data
Utilities," IEEE Trans. on Computers, Vol. C-25, No. 12, Dec. 1976,
pp. 1254-1259.

3. Booth, G. M., “The Use of Distributed Data Bases in Information Networks,
Proc 1st International Conference and Computer Communication: Impacts
and Implicatlions, Oct. 1972, pp.- 371-376. N

4. Booth, G. M. "Distributed Information Systems," Proc AFIPS National
Computer Conference, Vol. 45, June 1976, pp. 789-794.

5. Canaday, R. E. et al., "A°Back-End Computer for Data Base Hanagement
CACM, Vol. 17, No. 10, Oct. 1974, pp.575-582,

6. Llowenthal, E. I., "The Back-End Computer,” MRI Systems Corp., P.0. Box
9968, Austin, Texas 78766, Apr. 1976.

i 7. Maryanski, F. J., et al., "A Minicomputer Based Distributed Data Base
Management System," Proc NBS-IEEE Trends and Applications Symposiem:
Micro and Mini Systems, May 1976, pp.l1l13-117.

. 8. .CODASYL Data Description Language Journal of Development, Document C1362:
113, U.S. Governaent Printing Office, Washington, D.C., 1973.

9. Fossum, B. M., "Data Base Integrity as Provided for by a Particular Data
, Base Management System,' in Data Base Management, Klimbie, J, W. and
\ Koffeman, K. L. (eds.), North Holland, Apr. 1974, pp. 271-288.

10. Maryanski, F. J., Fisher, P. S., and Wallentine, V. E., "A User-Transparent
Mechanism for the Distribution of a CODASYL Data Base Management System,"
TR CS 76-22, Computer Science Department, Kansas State University, Manhattan,
Xansas 66506, Dec. 1976. 4
. ¥
d1. Chuy, W. W., and Ohlmacher, G. "Avoiding Deadlocks in Distributed Data
e Bases,"” Proc ACM Annual Conference, Nov. 1974, pp. 156-160.

